
Software Development Model 

 

The software development models are the various processes or methodologies that are being 

selected for the development of the project depending on the project’s aims and goals. There 

are many development life cycle models that have been developed in order to achieve different 

required objectives. The models specify the various stages of the process and the order in which 

they are carried out. Choosing right model for developing of the software product or application 

is very important. Based on the model the development and testing processes are carried out. 

Following are the most important and popular SDLC models followed in the industry: 

 
 

� Waterfall Model 



� Prototype 



� Spiral Model 



� Itcremental Model 



� RAD 



� V Model 
 

 

 

Waterfall Model 
 

The Waterfall Model was first Process Model to be introduced. It is also referred to as a linear- 
 

sequential life cycle model. It is very simple to understand and use. In a waterfall model, each 
 

phase must be completed fully before the next phase can begin. This type of model is basically used 
 

for the for the project which is small and there are no uncertain requirements. At the end of each 
 

phase, a review takes place to determine if the project is on the right path and whether or not to 
 

continue or discard the project. In this model the testing starts only after the development is 
 

complete. In waterfall model phases do not overlap. 
 

 

Following is a diagrammatic representation of different phases of waterfall model. 



System Analysis and Design 

 

 

The sequential phases in Waterfall model are: 

 

� Requirement Gathering and analysis: All possible requirements of the system to be 

developed are captured in this phase and documented in a requirement specification doc. 



� System Design: The requirement specifications from first phase are studied in this phase 

and system design is prepared. System Design helps in specifying hardware and system 

requirements and also helps in defining overall system architecture. 



� Implementation: With inputs from system design, the system is first developed in small 

programs called units, which are integrated in the next phase. Each unit is developed and 

tested for its functionality which is referred to as Unit Testing. 



� Integration and Testing: All the units developed in the implementation phase are 

integrated into a system after testing of each unit. Post integration the entire system is 

tested for any faults and failures. 



� Deployment of system: Once the functional and non functional testing is done, the product 

is deployed in the customer environment or released into the market. 



� Maintenance: There are some issues which come up in the client environment. To fix those 

issues patches are released. Also to enhance the product some better versions are 

released. Maintenance is done to deliver these changes in the customer environment. 

 

All these phases are cascaded to each other in which progress is seen as flowing steadily 

downwards (like a waterfall) through the phases. The next phase is started only after the defined 

set of goals are achieved for previous phase and it is signed off, so the name "Waterfall Model". In 

this model phases do not overlap 

 

Advantages of waterfall model: 

 

� This model is simple and easy to understand and use. 


� It is easy to manage due to the rigidity of the model – each phase has specific deliverables 

and a review process. 


� In this model phases are processed and completed one at a time. Phases do not overlap. 


� Waterfall model works well for smaller projects where requirements are very well 

understood. 

 

Disadvantages of waterfall model: 
 

 

� Once an application is in the testing stage, it is very difficult to go back and change 

something that was not well-thought out in the concept stage. 


� No working software is produced until late during the life cycle. 


� High amounts of risk and uncertainty. 



System Analysis and Design 

 

 

� Not a good model for complex and object-oriented projects. 


� Poor model for long and ongoing projects. 


� Not suitable for the projects where requirements are at a moderate to high risk of changing. 

 

When to use the waterfall model: 

 

� This model is used only when the requirements are very well known, clear and fixed. 


� Product definition is stable. 


� Technology is understood. 


� There are no ambiguous requirements 


� Ample resources with required expertise are available freely 


� The project is short. 
 

 

Very less customer enter action is involved during the development of the product. Once the product is 

ready then only it can be demoed to the end users. Once the product is developed and if any failure occurs 

then the cost of fixing such issues are very high, because we need to update everywhere from document 

till the logic. 

 


